新型石油基全降解纤维会不会杀死蚯蚓?
详情
2021年7月15日上午,国际知名的能源专家、澳大利亚国家工程院外籍院士、南方科技大学创新创业学院院长刘科做客科技创新院士报告厅,围绕“碳中和误区及其现实路径”做了精彩演讲,在业内引起广泛关注。
图2 2018年5月13日,李克强总理参观日本丰田氢燃料汽车。
图1 1912年,爱迪生跟他的电动车合影。
电动车和燃油车之争不是今天刚刚开始。1912年,以爱迪生为首的一批科学家,就觉得将来电动车可以统领世界。以福特为代表的汽车公司走的是燃油车路线。到了20世纪30年代以后电动车就几乎销声匿迹了,今天燃油车仍然占有统治地位。
为什么一百年前电动车多于燃油车?因为铅酸电池早于内燃机发明二十多年。有了铅酸电池,再接一个发动机,就是今天高尔夫球场开的车,上面再加一个车体就是汽车了。今天高尔夫球场开的车就是一百年前爱迪生开的车,所以电动车不是全新的技术,它这么多年来创新的核心在电池和电控系统。
那么,为什么前一百年电动车没有竞争过燃油车?世界前100年选择了燃油车的根本原因是什么?我在这里不预测未来,只用数据来讲历史,跟大家解释几个原因。
第1个原因,我们做能源的人都有一个概念叫做体积能量密度。汽车有压舱钢板,轮船有压舱水,这个能源略微重一点对汽车、轮船的影响不大,但油箱不能无穷大。假设我们的油箱都是1立方米,每种能源蕴含的能量密度大小,也就决定了汽车能跑的距离远近。
100多年前就发明的铅酸电池的能量密度是90千瓦时/立方米,人类花了上千亿美元和100多年的探索,电池能量密度到现在特斯拉的电池、比亚迪的刀片电池,也就是260千瓦时/立方米。而汽油的能量密度是8600千瓦时/立方米,柴油是9600千瓦时/立方米。稍后即将提到的甲醇液体是4300千瓦时/立方米,远大于电池。
第二个原因,液体是比较好的储能的载体。液体能源有个非常好的特点,陆上可以管路输送,海上可以非常便宜地跨海输送,而且可以在常温常压下长期储存。
2016年我到深圳工作不久,在一个能源研讨会上,我向很多能源界、学术界的朋友提了一个问题,当时很长一段时间在深圳开车加油是7块钱左右一升,假设这个汽油是从休斯敦的炼油厂用船拉到深圳盐田港再到加油站,这一升的运费是多少钱?我让好多搞能源的朋友猜,有人猜是一半(3块5),甚至有人猜5块,也有人猜1块的,我说真正的答案是7分钱不到。我说7分钱的时候大家没人相信,但一算就明白了。现在的大油轮一条大船可以拉30万吨,折算汽油是约4亿升(折算原油约3.6亿升)。液体的好处在于,使用泵和管道就能装船,不需要人工。到了深圳的码头,管道连接好后,使用泵就能打到罐里,也不要人工。路上耗费的就是船的油钱和折旧费,4亿升,如果一升一毛钱就是4000万元,但跑一趟船根本用不了这么多油钱。这就是为什么世界上产石油的只有那么几个地方,但任何一个角落都可以很方便地加油开车。所以,液体在运输上有很多好处,而且可以长期储存。高度酒(如苏格兰烈性伏特加、中国的二锅头、茅台等)存50年没问题,但电和气都不能长期储存。常见的高度酒也是一种醇类液体,举这个例子告诉大家,液体燃料的运输以及长期存储不存在任何问题。
这些最基本的概念大家需要清楚,这也是为什么我冬天到加拿大那些靠近北极的镇子去看,那里没有电网、天然气网,很多村镇只有一个加油站,一罐汽油、一罐柴油拉过来就可以满足日常生活了。在世界上再偏僻的角落,只要有公路的地方,拉过去就可以长期储存,拉一罐,一两个月就够了,但电和天然气管网没那么容易可以铺设到。这就是液体能源的优势。人类永远选择经济最优化的东西,不是谁喜欢什么,而是什么东西便宜,最方便。
第三点,为什么人类的第1条流水线是福特的流水线?内燃发动机是机械的东西,造一台很贵,但当设计一旦定型,在一条流水线每年造100万台的时候,每台的成本会极大降低。1913年,福特的流水线一上去量产,就让美国的汽车从4700美元降到380美元,让每个蓝领工人都可以买得起汽车。
然而电动车的不同之处在于,每个电池都需要一定量的镍、钴、锂,车上还有铜等各种金属。产能扩张后每台成本会有所下降,但是下降不多,不像机械不锈钢,要多少,产多少,造得越多,成本越低,材料成本很少。电动车的材料成本占大头,加工成本并不是主流,所以采用流水线可以降低一些,但不能有根本的降低。
中国的电动车从2016年底的51.7万辆增加到2018年第1个季度的79.4万辆,增量为28万辆,相对于当时整个汽车市场一年2900万辆的产量的1/1000,但同期追踪全世界的钴的价格和锂的价格,分别涨到了原来的四倍和两倍。这种情况告诉我们,如果技术不突破,不把钴和锂的用量降下来,造得越多材料越贵。当钴的价格翻了四倍,锂价格翻了一倍的时候,全世界没有一家公司声称通过回收电池里的钴和锂能实现盈利,这反过来告诉我们,电池的回收技术还有待突破。
最近很多原材料涨价,一方面是因为量化宽松,另一方面就是这些金属原来的供需关系发生了变化。原来的供需关系是非常稳定的,因为工业上用到的钴、镍这些的量非常有限。现在突然来了这么多造车新势力,供需关系就变了。当供需关系变了以后价格不会说是按比例增长,比如世界上100个人,但是只有99瓶矿泉水,最后1瓶的矿泉水一定不是涨到1.1倍,而是最后一个人买不起的价格。
就按今天的价格,电动车的成本其实每个人心里都有数。我列出来,每辆车需要铜53.2公斤,锂8.9公斤,镍39.9公斤,锰24.5公斤,钴13.3公斤,石墨66.3公斤,稀土0.5公斤,其他0.3公斤。最近,磷酸铁锂电池出来,钴的用量可以降下来的,但问题是冬天温度一低它的性能不好了。所以,今天的这个价格,一辆好的宝马、奔驰的内燃机成本在2300美元左右,特斯拉的电池成本则是在2万美元左右。一个工业要发展必须是可以大规模量产的时候,越大规模越便宜。这就是为什么人类的第1条流水线是福特的流水线。这都不是偶然的。这些问题我们大众不清楚,但是行业里面是清楚的。现在资本市场很热,但是一旦补贴政策停止了,能不能挣钱冷暖自知。
图2 2018年5月13日,李克强总理参观日本丰田氢燃料汽车。
大家关心汽车的人可能都看过这张照片(图2)。借着2018年5月13日国家总理李克强访问丰田汽车公司,网上疯炒氢能,说电动车真正的未来是氢燃料电池汽车,不是电动车。氢能有它的好处,发电效率高,能降低对石油的依赖,排放的是水蒸气,而且大规模量产后成本能下来。尽管燃料电池也要用贵金属,但是它的贵金属回收技术相对来讲比较成熟。并且这些年的研发使得贵金属用料量在降低,这都是它的优点。
现在我们的电池是梯级利用,今天的电动汽车用了5到7年,把退役动力电池用作储能电源,比如放到5G基站底下做储能,可能还可以再延迟一二十年。但是储能电池是有寿命的,里边有很多对自然有害的化学物质,不可能无限期使用,一二十年后仍然需要回收。如果不回收,当几百万个甚至将来上千万个电池分布在中国大地,如果任其泄露,那是环境的灾难。
能源全生命周期分析概念很重要,我们曾经做过一百多条线的“油井到车轮子”或者是“矿井到车轮子”的分析,要知道中国的能源40%在新疆,怎么把能源输过来,这是一个复杂的系统。
我在GE曾花了几百万美元和很多博士一起做能源的全生命周期分析研究的模型,每一步的排碳是多少,效率是多少,最后用数字说话。回国后,我花了很大的代价把这套方法论引进来,专门在低碳所和美国的EPC公司及国家实验室合作启动了“能源的全生命周期的分析”的项目,从零开始培养这方面的人才。这种软课题在国内很难拿到大的经费支持,但是很重要,因为要用“数据决策”。原中国工程院副院长谢克昌院士领导的团队包括低碳所的田亚俊博士等正在致力于推动这方面的工作,补这一块的短板,是非常有意义、有价值的工作。因为真正的决策最后是要依靠数据的,要科研人员花大量的时间把数学模型一点点建起来,并不断地调整,最后能够跟现实的数据对照,不断修正模型参数,最后用这些模型的预测数字做未来的决策,这叫“数据决策data-driven decision making”,这是我们要提倡的一种文化。就像碳中和,将来也要做好各种渠道的碳中和数据搜集,从油井、矿井、天然气井到车轮子、到电灯泡等等,每一步的全生命周期分析,建立模型,用模型分析完以后大家用数字说话。
电动车遇到这些问题,并不意味着不去发展电动车和电池技术,电池技术的研发永远是重要的,不仅是工业界在推动研发各种先进电池技术,我们南方科技大学的赵予生教授、邓永红教授等团队在这方面一直努力创新研发,并且取得了领先的进展。但是有一点我要讲,电动化和网联化没有必然的联系。内燃机驱动只要电池足够大,够一台较好的计算机用就行了。现在有人说要搞网联化、搞智能化,所以必须搞电能化,这句话只对了一半。今天一个智能手机的运算能力有多少?网联化可能需要几十个手机的运算能力,那也就是几块电池的问题。但是如果因为需要这种运算能力,就一定要把驱动改成电动吗?实际上,现在一辆比较好的奔驰车,只要有一块足够的电池,里面有电动机发电也可以做网联化、智能化。所以智能化、网联化和电动化没有必然的联系。
为什么氢能汽车还没有产业化?
氢能一点也不新,早在上个世纪六十年代,阿波罗登月的时候就是带着液氢液氧上天,氢能发的电供仪器用,产生的水宇航员喝。
我曾经在美国联合技术(UTC)-壳牌合资公司工作,很多年美国所有宇宙飞船的燃料电池就是联合技术公司(UTC)生产的。上世纪90年代一直到2005、2006左右,这个期间美国花了上百亿美元在燃料电池上的研发。我记得2003年小布什总统在他的国情咨文演讲时说,他会宣布一个计划,美国能源部花12亿美元开发氢燃料电池汽车,15年后每一个美国人开的车后边排放的都是水蒸气。然而到现在,全世界的燃料电池(车)可能加起来也就是3万多辆,美国不到1万辆。去年全世界氢能源车只卖了1900多辆,丰田也没卖多少辆。小布什总统用还没有真正意义上突破的技术去制定国家战略,耗费大量投资,尽管在这期间培养了的大量的科学家和研发人员,但是对于产业的推动和环境的改变是微乎其微的。
燃料电池汽车,也就是我们说的氢能汽车,为什么没有产业化?最根本的原因是氢气不适合于作为你我大众共有的能源载体。很多人在这块有一个误区,甚至有媒体渲染说“氢是人类的最终能源”,这句话是不严谨的。氢不是一次能源,而是一种二次能源,或者更确切地说是能源的载体。这个世界有煤田、油田、天然气田,但没有氢田。氢和电以及甲醇一样,是通过别的能源制造的,但是作为载体,氢不具备上面提到的液体能源在能量密度、管道及跨海输送、长期储存方面的优势。
氢气不适合于做大众能源载体,主要的原因在于有几个方面人们无法通过研发改变。
第1,氢气是体积能量密度最小的物质,我们要求是体积能量密度越大越好。好多人犯了一个概念性的误解,说氢是能量密度大的,这句话又是对了一半。如果论公斤(质量能量密度),氢的能量密度是比较大的。但是对于汽车压重和轮船有压舱水来说,重一点问题不大,但油箱体积不能太大,应该论每立方米,论公斤意义不大。如果转成同样的能源概念,它的体积能量密度是最小的(如图3)。为了增加体积能量密度,只好增加压力。目前看到所有的氢燃料电池车里的储氢罐,都是350和700公斤大气压。储氢罐如果拿不锈钢设计必须做得非常厚,因为压力太高。学过理工的人都知道,700公斤压力的高压设备,不是那么容易生产制造的。
图3:各类能源的能量密度
第二,氢气高压会有一个问题,氢气是元素周期表中最小的分子,最小的分子就意味着最容易泄露,长期储存是问题。
第三,氢气在露天没有问题,我们在20多年前在美国做过这个实验,一个氢燃料电池车,它的储氢罐为了安全一般都放在最后,普通步枪一枪是打不透的,用超强的步枪打穿,因为氢气很轻,就像氢气球一样,一条火龙冲上天,驾驶室的温度一下子升不了那么高,人有足够时间逃逸。
但是,在封闭的空间里,氢气就会有巨大的问题。氢气是爆炸范围最宽的气体,可以从4%到74%。小于4%是安全的,大于74%只着火不爆炸。但是在4%到74%这个很宽的范围内,遇火星就爆。
现在北上广深这些城市,尤其在深圳,90%以上的车是停到地下车库这一封闭空间里的。当大量氢能汽车进到地下车库,若有一辆车泄露,就会产生巨大的危险。尽管这个是小概率事件,但是使用量众多的时候,总有部件老化等问题发生,哪怕储氢罐是安全的,阀门、管路等也有一定小概率老化,或者开车不注意发生了撞击。一旦泄露遇到火星、电火花就会爆炸,引起其他车爆炸,一个大楼都有可能毁掉。所以在封闭的空间里,使用氢气要非常注意。
因为氢气的爆炸性,现在都不让运输氢超过一定的范围的车辆过隧道,如果把隧道炸掉了怎么办?当然,将来是不是能够建氢管道是另外一个问题。
同样因为氢气的爆炸性,建设加氢站要特别小心,周围需一定的安全距离。现在的北上广深到处都是加油站,但地价这么贵,到哪找能那么多地重新建加氢站呢?
因为这些问题,尽管氢能现在很热,但是要谨慎。氢气的这些性质决定了它不适合做能源载体。所以,当人们说“氢是人类能源”时,很多的东西是似是而非的。
疫情前,科技部几位同志可能听说我做过几届全美氢能与燃料电池峰会主席并且二十多年来一直是国际氢能协会的理事,带了几个专家到深圳来调研,我们谈了一下午,之后我把氢能的一些现状、问题以及解决途径写了一个简单的报告,后来他们就把它放进《科技日报》的头版头条里。
制氢容易,但储氢、运氢有难度。世界上其实氢气的使用很广泛,中国的氢气产能已经达到3000多万吨/年了,今天我们用的每一克的化肥都是氢造的。世界上有这么多的化肥厂、炼油厂都要大量的氢气,但是目前没有一个化肥厂、炼油厂是靠太阳能、风能制氢、制化肥。什么原因?太贵,要是便宜的话,这些化肥厂,炼油厂早就改了用太阳能、风能制氢了。
现在全世界每年已有数千万吨的氢市场,而且供给到炼油厂氢是最贵的,每个炼油厂边上都有个大的气体公司。用风能、太阳能制氢不是不可以做,只是目前没有足够的经济吸引力。如果说这是赚钱的,相信很多企业家早就开始拿风能和太阳能制氢去了。
氢也不是没有优势,也可以做,怎么做?跟我们的碳中和有关系。
为什么甲醇可能是作为好的储氢载体?
如果今后真正想实现碳中和,并且太阳能、风能可以卖碳税的时候,可以把风能、太阳能和煤结合制出比较便宜的甲醇,通过车载甲醇制氢并与燃料电池系统集成,这就比直接燃烧的发动机效率高。这条路线未来是有可能的。我只能说有可能,不能保证,主要取决于各种政策的调整和碳税。如果碳税上去了,这条线路就有经济性。
1L甲醇和水反应可以放出143克的氢。储氢要么压缩,要么冷凝。即使冷凝,1L的液氢也就72克,而1L甲醇和水反应的产氢量是1L液氢的2倍。
为什么这个技术有可能这样做?二十年前,全世界第1辆汽油在线转化制氢的燃料电池汽车,是我领着尼桑和壳牌的一些工程师造出来的。
这有一个小故事,那时丰田、本田、GM的高压氢燃料电池已经造出来了,尼桑发现落后了,于是找到壳牌,又找到我们,说能不能造一辆车,加的是汽油,汽油在车上和水、和空气反应造氢,然后推动燃料电池,这样燃料电池的效率高,同时也可以不用加氢站。
当时为什么没有做甲醇?因为页岩气革命还没发生,天然气当时很贵,国外的天然气制甲醇成本太高。2005年,如果我们预测到会发生页岩气革命,就不会花28亿美元建零污染火电厂。但技术是不可预测的。页岩气革命让世界上突然发现了上百年用不完的天然气,也使得天然气从17美元/百万英热单位狂降到1.5美元,而后平盘到3美元左右。
在天然气价格那么高的时候,甲醇没有经济性。所以,当时我们公司考虑用油,说能不能在车上汽油制氢。老板找我的时候,我说这个项目肯定不挣钱。但是他跟我说,我做阿波罗登月的时候根本没有想到挣钱,但事实上我们阿波罗登月开发的技术后来在各个领域用上了,现在有尼桑给我们钱,只要把技术做到极限,最后也能在其他领域有用。我说,只要别拿挣钱衡量我,我们把技术做到极限那是好事。后来,几年之内我们就把第1辆汽油转化制氢的燃料电池汽车造出来了。
有了这个技术做积累,甲醇制氢比汽油转化容易很多,因为一方面甲醇干净得多,没有硫;另一方面汽油转化需要850度以上,甲醇和水反应200多度就可以了。
为什么我提甲醇这条线路?甲醇可以从煤、天然气来制,未来可以用太阳能制氢与CO2反应制,或太阳能催化二氧化碳和水来制甲醇,就变成绿色的甲醇。中国科学院大连化物所的李灿院士以及我们南方科技大学都在做绿色甲醇的研发,中科院在兰州已经建设了1000吨的论证示范工厂。现在中国甲醇产能全世界高,大概8000多万吨。另外,页岩气革命让世界发现了100多年用不完的天然气。有100多年用不完的天然气,就有100多年用不完的甲醇。未来如果碳税真正上去了,我们也可以用风能和太阳能制氢,这样生产的甲醇就完全是绿色甲醇了。
但是这个世界不需要追求零碳,国际上常提的零碳排放通常是“近零(Near Zero)”和“净零(Net Zero)”。讲碳中和的时候一定要强调,就是这个世界碳太多不好,但是任何人追求零碳是不科学的,因为我们吃的食品、植物生长和光合作用都需要二氧化碳。如果把中国的经济从煤经济转到天然气经济或者是甲醇经济就可以减碳67%,那么基本上就可以做到碳平衡了。因此中国讲的是“碳中和”,国外讲的是“净零排放”,也就是要排放碳的同时,有别的技术或者措施实现排放平衡到一定水平。
我个人觉得,从中国的天然能源禀赋和工业基础来看,中国有很成熟的煤制甲醇技术,只是要产生很多的二氧化碳,因为要补氢以达到甲醇合成所需要的碳氢比,然而通过水煤气变换将一氧化碳转化成氢气的同时会排放二氧化碳。如果那部分的氢可以在西部用太阳能和风能制,同时副产氧气供煤气化用,能够解决很多排放问题;煤制甲醇的工厂里,空气深冷分离制氧气的空分装置是投资比较大的,这块投资未来省下来可以做太阳能电解水装置生产氧气和氢气供煤制甲醇用,这样煤转成甲醇就不用排放二氧化碳,再用甲醇作为能源的载体就可以做到减碳60%以上,这可能是未来比较现实的一条碳中和路线。说穿了是利用现有的基础设施把太阳能以甲醇液体的形式储存下来;这是未来风能,太阳能储能的另外一条途径。
这样风能、太阳能虽然贵一点,但煤很便宜,这两个一中和,成本就可控了。氢气和二氧化碳做绿色甲醇目前还有一定的成本障碍,如今直接用现有的煤甚至劣质煤制甲醇就可以了。甲醇是一个载体,液体的载体比气和电载体科学多了。因为,电虽然好输送但是不好存储,氢既不好输送,也不好存储,只有液体比较方便。
今天氢气制造很便宜,可一旦压缩到几百公斤大气压的时候成本就上去了。张家口冬奥会做氢能示范,国家补贴了大量资金,并且目标在未来几年达到30元/kg的氢气价格。但是如果在车上用甲醇,就按今天的市场价格买甲醇,每公斤氢气的成本只有15元。
所以一方面是甲醇制氢的成本低了;另一方面,甲醇常温常压下是液体,甲醇站可以用已有的液体加油站改装。对于一般的加油站,近年可能是6个罐,前期替换成1个甲醇罐、5个汽柴油罐,再过十年,替换成2个甲醇罐,4个汽油罐。这样整个能源转型就不需要再花多少万亿去建加氢站和充电桩了。
简单估算一下布局成本,按照加油站450辆车/天的加注能力,充电站24辆车/天充电能力,小型氢气加注30辆车/天的能力来测算,假设都建一万座,甲醇大约需要20亿美元,充电站大约需要830亿美元,加氢站大约1.4万亿美元,而且这个1.4万亿还没有考虑地价的因素。
我不认为我们会把花了几万亿建起来的液体燃料基础设施毁掉再重新建加氢站和充电桩,没有必要。石油如果排碳太高,可以用绿色的液体取代,而且我们可以把太阳能和风能转成液体储存下来,这就改变了储能的概念,原来大家多少年花了多少万亿就是研究储电,但是储电干了一百年都干不过一个抽水储电,这条线上再给十亿的研发经费,成功的概率也就是万分之十、千分之一。
电池对小型设备比如说手机非常重要,但是靠电池做大型的储能要非常谨慎。最近国家也非常注意,把梯级利用的大电站停下来了,因为安全性是一个问题。
电动车和燃料电池的问题在于基础设施的土地成本问题和冬天续航问题。现在我们城市里土地很贵,好多人为了拿国家补贴就在郊外搞一个充电站,但是买一辆车如果开车来回一个小时才能到充电站或加氢站,你会买吗?现在,我国已建成的公共充电桩利用率平均只有4%左右,其中充电桩铺设最多的北京、上海,使用率仅为1.8%、1.5%。电动车存在里程焦虑且冬天无法满足供暖,到冬天一遇冷可能会趴窝,要知道全世界80%主要发达城市位于北纬25度以上,纽约、伦敦、巴黎、莫斯科、东京、北京、多伦多,这些城市都是有冬天的地方,如果一辆汽车只能夏天开冬天开不了,你会买吗?原来我在北京,为了研究这个,专门找电动出租车坐,上车后我发现司机大冬天穿着军大衣、棉靴子,不敢开暖气。我说把暖气打开,司机说他不敢。因为不开暖气,只能跑100多公里,如果开了暖气,马上就没电了,他根本赚不了钱。
如果风能、太阳能和煤炭结合转成甲醇,我车上永远装50升的甲醇就好办了。今天,在深圳买一个电动车,连广州都不敢跑一趟。跑到那里没电了不知道到哪充,即使能找到充电桩,可能也要等一个小时,而快充对电池的破坏很大。怎么办?我们现在想办法给电动车赋能。反正晚上回家停车,你在停车位边安一个比较小的慢充装置,几百块钱就行了。你把它充满,但是车上永远装50L的甲醇,就相当于你晚上睡觉把手机充满,同时还带了一个充电宝。没电的时候,就可以用车上的甲醇和水制氢,用氢发电。这样根本不需要再建那么多充电站和加氢站,而且甲醇和水反应只需要200多度,它的余热就可以把电池维持在一定的温度,也解决电动车冬天的续航里程问题。
雾霾的元凶在哪里?
还有一个碳中和的路线,是跟雾霾相关的。
这些年,我一直在研究雾霾。我对雾霾有亲身体会。如果一直在北京生活我们可能感觉不到,但我家在南加州,早些年回国后,每次从洛杉矶到北京以后,那种强烈的对比让我觉得一定要把中国的雾霾给治理好。
雾霾包括一次颗粒和二次颗粒。化石燃料如柴油燃烧时尾气中直接排放的颗粒是“一次颗粒(Primary Particulates)”,占雾霾总量的24%左右。对雾霾贡献比较大的是“二次颗粒(Secondary Particulates)”占到其总量的约50%左右。“二次颗粒”是化石燃料燃烧尾气中的气态污染物(如NOx、SOx)和挥发性有机物(VOC)进入大气后,在一定的水雾状态下与空气中的氨及VOC等物质发生气溶胶反应形成的颗粒。氮氧化物在天空遇水就变成硝酸,硫氧化物氧化遇水就是硫酸。如果我们不使用化肥就只能形成酸雨形不成雾霾。然而大量使用化肥向大气中释放了一定规模的氨,氨在大气中呈碱性,酸碱中和生成硝酸铵盐、硫酸铵等固体细颗粒,这些细颗粒才是PM2.5的主要来源。头发丝大概是70微米左右,肉眼的分辨率在60微米左右,一个PM2.5的颗粒是看不见摸不着的,但是当无数个PM2.5悬浮在天空中就可以遮天蔽日。
这两年国家在脱硫脱硝上花了上万亿,取得非常大的进展,但是到冬天还有雾霾,一个重要因素是使用化肥以及氨排放没有得到足够的重视。化肥的排放就是氨的排放。
化肥有它的问题和弊性,它使用一年、两年、三年、五年没问题,但是用了三十年、五十年以后,问题来了。早些年硝酸铵、磷酸铵强酸弱碱,氨被吸收,酸留到土壤里面,引起土地酸化,把土壤中的细菌杀死,引起大面积的土地板结。
另外,用了化肥三十年、五十年后的土壤长出来的蔬菜看着个大皮厚,但吃着没有味道了。什么原因?因为决定食品营养和味道的是生长作物的半米左右深的土壤中微量元素和矿物质的含量。土壤中有很多矿物质不溶于水,但是一遇到酸,会发生酸浸,浸三五十年以后,当半米深的土壤中这些微量的矿物质都没有了的时候,食品不可能不变。
对比1960年的玉米和2013年的玉米情况。1960年是纯粹自然生长的,2013年的是化肥催大的,看着个大饱满,但是每100克里面钙含量下降了78%。人类大量使用化肥和农药,导致土壤中的微量元素不断下降,并伴随着哮喘、心脏病、癌症等疾病的增加。
中国自1978年改革开放之后,开始大量开始使用化肥,到大概2011年化肥产能接近峰值。这期间全中国粮食增产了87%,但化肥使用量增加到682%。每吨粮食产量需要0.1吨的化肥。2017年全国农作物总播种面积1.6亿公顷,平均化肥施用强度为352公斤/公顷,福建、海南、北京、广东等省市分别为751、724、707、611公斤/公顷;而国际警戒线值为225公斤/公顷(世界平均水平为120公斤/公顷)。
其实随经数百万至数千万年,物质不灭,土壤中宝贵的微量元素及矿物质是以煤炭的形式保留至今的。煤炭中可燃的部分,基本都是通过光合作用二氧化碳形成的;不可燃的部分从哪里来的?就是远古时期树根吸收的宝贵的矿物质、微量元素。但这些东西不能用火烧掉,一千多度以后它们就形成了玻璃状的琉璃瓦。
图4 微矿分离技术